cartographer.mapper
¶
Mapper algorithm implementation
-
class
cartographer.mapper.
Mapper
(filterer=PCA(copy=True, iterated_power='auto', n_components=2, random_state=None, svd_solver='auto', tol=0.0, whiten=False), coverer=HyperRectangleCoverer(intervals=10, overlap=0.5), clusterer=DBSCAN(algorithm='auto', eps=0.5, leaf_size=30, metric='euclidean', min_samples=5, n_jobs=1, p=None), params=None)[source]¶ Mapper algorithm implementation
Parameters: filterer : scikit-learn transformer, default=PCA(n_components=2)
If y is not specified in the fit method the lense/filter values used will be the result of the application of this transform Pipeline to the input data will be considered.
coverer: instance of Coverer object, default=HyperRectangleCoverer()
clusterer: scikit-learn-like cluster estimator, default=DBSCAN()
params: dict of params for filterer, coverer and clusterer, default={}
Parameters to be passed to the filter, coverer and cluster objects
Methods
fit
(X[, y])Creates a Mapper graph for the input data fit_predict
(X[, y])Performs clustering on X and returns cluster labels. get_params
([deep])Get parameters for this estimator. set_params
(\*\*params)Set the parameters of this estimator. -
fit
(X, y=None)[source]¶ Creates a Mapper graph for the input data
If y is not None but a bidimensional array-like, its columns are used as lens/filter. If is None, the filters attribute is used.
Parameters: X : array-like, shape=(n_samples, n_features)
Data on which the mapper algorithm will be applied.
y : array-like, shape=(n_samples, n_filters), optional
Lense/filter values for each samples, if not specified the class attribute filters will be used.
-